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ABSTRACT

Over the years, many works have been published on the two-
dimensional foreground segmentation task, describing different
methods that treat to extract that part of the scene containing active
entities. In most of the cases, the stochastic background process
for each pixel is modeled first, and then the foreground pixels are
classified as an exception to the model or using maximum a poste-
riori (MAP) or maximum likelihood (ML). The shadow is usually
removed in a later stage and salt and pepper noise is treated with
connected component analysis or mathematical morphology. In
this paper, we propose a global method that classifies each pixel by
finding the best possible class (foreground, background, shadow)
examining the image globally. A Markov Random Field is used to
represent the dependencies between all the pixels and classes and the
global optimal solution is approximated with the Belief Propagation
algorithm. The method can extend most local methods and increase
their accuracy. In addition, this approach brings a probabilistic
justification of the classification problem and it avoids the use of
additional post-processing techniques.

Index Terms— Foreground Segmentation, Belief Propagation,
Shadow Removal, Global, Markov Random Fields

1. INTRODUCTION

The most popular methods for detecting foreground observations at
each pixel correspond to those that classify observations into fore-
ground as an exception to a background model [1, 2, 3, 4, 5, 6]. Of
course, foreground models can also help. However, it is often diffi-
cult to model the color appearances of moving objects. Besides, the
foreground models of each object have to be mapped to each pixel at
each instant before performing a classification, which is also prone
to errors. On the contrary, the background appearance of a pixel can
be robustly learned using fixed cameras and, therefore, background
models usually provide the most reliable source of information in
the segmentation task.

Shadow removal algorithms are usually incorporated after the
background subtraction step as follows. First, the expected back-
ground for each frame is estimated using the background modeling
algorithm. Then, some cues are extracted from the expected back-
ground. These cues are used then to identify if a pixel is a cast
shadow/highlight pixel or not. Prati et al. have presented an in-depth
survey of those algorithms [7].

This work has been partially performed within the framework of EU FP7
Project 3DPresence and within the framework of the Spanish Agency CDTI
project CENIT-VISION 2007-1007.
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In this paper, we propose a global classification framework. This
framework allows an easy incorporation of well-known background
models. We also provide a simple solution for not having to model
the foreground appearances and still be able to use the probabilis-
tic global setting. Finally, the proposed framework incorporates the
shadow process as an additional class in the classification instead of
being a post-processing step as is it often found in the literature.

This paper is structured as follows. Section 2 describes the local
methods applied to classify the background and shadow pixels. The
proposed global foreground segmentation based on local classifica-
tion is explained in section 3. Experiments and results are dealt with
in section 4. The paper concludes with a summary of the improve-
ments accomplished and the future paths of research.

2. LEARNING THE BACKGROUND WITH LOCAL
METHODS

2.1. Local foreground segmentation

We adopt a single-class statistical model for modeling the back-
ground color of a pixel x (indicating its spatial coordinates), given
observations of its color value I(x) across time. For this purpose, we
use a Gaussian probability density function. Gaussians have been
previously proposed in [8, 5, 6], among others, to ensure that the
cameras thermal noise does not produce classification errors. Some
of these works [8, 5], adopt multi-class models to model repetitive
background, such as in weaving flags, or moving trees. However,
a single-class model is enough in our approach, since our system is
being developed to operate in a scene that consists of a relatively
static situation:

1 — 5 (I(x)—p < x)—
e 3G TR A0 ()

(2m)3/2 /5]

corresponding to the Gaussian that models the color of the back-
ground process of pixel x, and where pixel color values (I(x)) are
expressed as a vector of three dimensions in the RG B color space.
Often it is assumed that the covariance matrix is diagonal with R, G
and B sharing the same variances: 3x = 0,2( -Ids«s.

Similarly as in [5], model adaptation is implemented as a low
pass filter procedure. Thus, once the pixel value has been classified
into the background, the model is adapted as follows

G (I(x)) =

px[t] =(1 = p)px[t — 1] + pI(x)
o2t =(1 - p)o2ft — 1]+
+ p(Le(x) = paxc[t]) T (L (%) — paxc[t]), @)

where p is the adaptation learning rate: p o< Gk (I(x))|¢.
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The foreground process can be modeled using histograms, Gaus-
sians or any other pdf. However, we simply use a uniform pdf to
model the foreground process in each pixel as in [9], which is in
fact the probabilistic extension of classifying a foreground pixel as
an exception to the model, as discussed in [10]. Since a pixel ad-
mits 256 colors in the RGB color space, we model its pdf as
PL(%)|¢) = 557

Then, the probability that a pixel x belongs to the foreground ¢,
given an observation I(x), can be expressed in terms of the likeli-
hoods of the foreground and background processes as follows

P(¢)p(1(x)[¢)
p(I(x))

where P(¢) is the prior probability of foreground. A pixel can be
classified as foreground using maximum a posteriori if P(¢|I(x)) >
% is satisfied.

Finally, the Gaussian model is adapted using (2), when the pixel
is classified into the background.

P(o[I(x)) =

2.2. Learning shadows with color statistics

A shadow is normally an area that is not or only partially irradi-
ated or illuminated because of the interception of radiation by an
opaque object between the area and the source of radiation. Assum-
ing that the irradiation consists only of white light, the chromaticity
in a shadowed region should be the same as when it is directly il-
luminated. The same also applies to lightened areas in the image.
Based on the same assumption, a normalized chromatic color space,
eg.r=R/(R+G+B),g = G/(R+ G+ B), isimmune to shad-
ows, but the lightness information is unfortunately lost. Keeping it
is important in order to avoid some simple errors such as confusing
a white car with a gray road.

It is relevant to underline the fact that we are only interested in
detecting shadows that form part of the foreground objects. Shad-
ows that form part of the background are not analyzed as they are
assumed to be constant along time. Our method to detect shadows is
based on the previous observation about chromaticity and brightness
distorion over shadowed regions. More precisely, a shadow removal
algorithm needs to analyze foreground pixels and detect those that
have similar chromaticity but lower brightness to the corresponding
region when it is directly illuminated. The adaptive background ref-
erence image provides the desired information.

In view of the fact that both brightness and chromaticity are
very important, a good distortion measure between foreground and
background pixels should account for the discrepancies in both their
brightness and chromaticity components as proposed by Horpraset
etal. in [2]. Following [2], Brightness Distortion (B D) is defined as
a scalar value that brings expected background close to the observed
chromaticity line. Similarly, color distortion (C'D) is defined as the
orthogonal distance between the expected color and the observed
chromaticity line. Both measures can be graphically represented as
in Fig. 1 and formulated as:

BD = argmin ||I(x) — o - ux]]|
CD = |[I(x) = BD - pux||, 3)

where px is the mean in the RG B color-space of the background
process defined in (1). Note that brightness distortion values over
1 correspond to lighter foreground and, on the other hand, the fore-
ground is darker when BD is below 1.

Finally, a set of thresholds need to be defined to assist the clas-
sification into foreground, background and shadow [11].

Fig. 1. Distortion measurements in the RG B color space.

Note that this technique fulfills its objective not to remove self-
shadows as they do not share similar brightness or chromaticity with
their background reference image.

Although the algorithm gives good local classification of shad-
ows, its application requires manual tunning of the thresholds. Our
goal is to be able to globally classify shadows. Therefore, we need
a method to characterize shadows locally. We propose to model the
shadow statistics of a pixel as a bi-dimensional Gaussian distribu-
tion on the BD and C'D space. Our purpose is to obtain the mean
and standard deviation using the observed brightness and chromatic-
ity for each pixel x, incrementally. The samples of that observation
are taken each time a pixel is classified as shadow. Then, assum-
ing statistical independence between the brightness and chromaticity
stochastic processes, this pdf can be expressed as:

1 _<BD—53D>2_<CD—QCDP
20'BD QGCD . (4)

p(BD,CD) = D —
And, similarly as in (2), means upp, pcp and variances 0'}23D,
o2& can be updated as a low pass-filter process with each incoming
observation that is classified as shadow.
This learned local shadow model is further used in the global
foreground segmentation method described in section 3.

3. EXTENSION TO A GLOBAL CLASSIFICATION

In the previous section, we have expressed the foreground, back-
ground and shadow stochastic processes in terms of their probabilis-
tic density functions. For the particular case of the shadow, it is
possible to compute BD and C'D from the RG B observation and
evaluate it with (4) to obtain the likelihood of a particular observa-
tion of belonging to the shadow class. In fact, with the aforemen-
tioned mathematical expressions, it is possible to use a MAP setting
to probabilistically classify each new observation.

However, we prefer to solve the problem globally, not assuming
that pixel observations are independent among their neighbors. The
problem we want to solve is:

Tj(x) = argﬁlaxP(F@P(FMx)H), 5)

where 'y, is any of the 3 classes and I is the whole image, i.e., not
just one observation in a pixel I(x).

3.1. Belief propagation (BP)

In order to solve (5), we state the problem as a Markov Random
Field. The Markov property asserts that the conditional probability
of a site in the field depends only on its neighboring sites. And in
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Fig. 2. The schematic diagram of the BP-based foreground, back-
ground and shadow classification method.

order to enforce spatial interaction between pixels, it is necessary
to define which are the costs of assigning different classes to neigh-
boring pixels. In our implementation, we assign two different types
of transference costs. The cost we assign to transitions not going
to/from the foreground class is ¢ = —In(0.2), which corresponds to
the 20% of the probability of staying in the same class. On the other
hand, we double the costs (2 - ¢) to any transition that goes to/from
the foreground class. The reason for doubling these costs is that the
shadow class is semantically closer to background than foreground.
Note that a shadowed region could also be considered a background
region where there has been a change of illumination.

Note that even if the costs are given, it is intractable to solve the
MAP setting of such a problem. In this paper, we propose to use the
Loopy Belief Propagation [13] inference algorithm as an approxima-
tion to the solution.

3.2. Global foreground segmentation with shadow removal

The outline of the algorithm, which has been depicted in Fig. 2 is
as follows. First, the likelihoods of each observation and class are
obtained locally. From such likelihoods we obtain the local data
costs which are the input to the BP algorithm. Then, the Markov
Random Field is solved with the BP algorithm using the transition
costs aforementioned. Once the image has been classified globally,
then the background, BD and C'D Gaussian models are updated
following the low pass-filter procedure described in (2). The process
is performed if the observation is classified with their corresponding
class. The foreground model is not updated since it corresponds to a
fixed uniform pdf function.

4. RESULTS

In this section, three different methods are compared. A local only
method, a local method with some post-processing, consisting in a
morphological aperture followed by a hole filling and the global de-
scribed in the previous section. The ground truth has been obtained
after manual segmentation of 10 consecutive frames and on a dataset

captured in the context of the 3DPresence EU project by the Fraun-
hofer Institute for Telecommunications/Heinrich-Hertz-Institut in
Berlin.

In order to assess the performance of the mentioned algorithms,
two types of measures are calculated. The first set is intended to eval-
uate the ability of the system to recognize the true solution at every
frame, independently from the consistency of the solution through
time. The second set of measures is designed to assess the tempo-
ral homogeneity of the found solution; in other words, the flickering
effect.

We include the recall, precision and f-measure in the first set.

The recall is defined as —i-comectdetections __ "o 1,0 ci5i0n is calcu-
# Correct detections+# misses

# Correct detections : et
lated as FCormeet detections +# false alarms* Finally, the f-measure is intended
to combine the two quantities: a good system will be balanced both
in recall and precision: f-measure = 2XIecallXprecision
. . recall+precision .
The results for the different algorithms are shown in Table 1 and
a particular frame has been presented in Fig. 3.

Table 1. Instant System Evaluation

G. truth Local Loc. & Post P. Global
# Correct det. 201642 158401 181902 183565
# False al. 0 43241 19740 18077
# Misses 0 12864 8348 8521
F.A. rate 0 0.005 0.003 0.002
Miss rate 0 0.002 0.001 0.001
Error rate 0 0.007 0.004 0.003
recall 1 0.950 0.934 0.956
precision 1 0.786 0,902 0.910
[f-measure 1 0.860 0.918 0.932

Note that the global method gives more accurate results than the
rest of methods in terms of precision, recall and f-measure. The
second best method is the local method with post-processing and the
worst one corresponds to the local only method. In order to be as
fair as possible with the comparisons, we have employed exactly the
same Gaussian classes in the local and global methods. However,
the classification is done using MAP at the pixel level in the local
methods and BP in the global method.

In Fig. 3, results of the three different methods are also presented
for visual inspection. The shadows are highlighted in blue and the
background is set to black. Note the noise in the classification of
the local method due to not having any kind of spatial regularity.
In addition, it should be pointed out that that post-processing tech-
nique has to be tunned for each new dataset while such tunning is
not needed in the global method proposed here.

Temporal consistency is measured by comparing the false
alarms and misses for every frame t. This new error frame is
denoted as F, and is calculated with an XOR operation between the
ground truth and estimated solution. We compute the accumulated
temporal error image, T, as T = >, v _; (XOR(E, Ei41)).
The average temporal error energy per pixel (ATEE) corresponds

to ATEE = Z]\'f 'j‘lT. The lower the ATEE value, the less flickering
effect. ATEE = 1 would mean that every single pixel varies from
the ground truth solution to its inverse during the whole sequence.

The obtained values of ATEE are shown in Table 2.

Table 2. Temporal System Evaluation

G. truth Loc. & Post P.
ATEE 0 0.010435

Global
0.006676

Local
0.019545
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Note that the global method produces twice less flickering than
the other methods. This effect can be clearly observed in the videos
we made available: http://www.3dpresence.eu/icip09.

(Post-processed foreground with
local method)

(Global method)

(Foreground with global method)

Fig. 3. Images corresponding to foreground segmentation with the
discussed methods. Left column, classification results. Right col-
umn, foreground segmentation after removing shadows.

5. CONCLUSIONS

In this paper we have proposed a unified framework for the fore-
ground, background and shadow classification task. The proposed
framework operates in a global manner by transferring probabilistic
information between neighboring pixels which are set as a Markov
Random Field. The algorithm can be summarized as follows. First,
the likelihoods of background, foreground and shadow are obtained
per each pixel locally. Then, these costs, together with the transfer-
ence cost are employed by a loopy BP technique to obtain an ap-
proximate solution of the global MAP classification problem. After
all the pixels are classified, the background and shadow models are
updated using a low-pass filter approach.

The proposed method is better than local methods in terms of
precision, recall and f-measure. In addition, the global segmentation
method presents lower flickering, which is an important factor to
consider depending on the field of application of the segmentation.

These results are obtained at the cost of a higher computational
cost. The high CPU requirements of the algorithm makes it unfea-
sible for real-time operation with current PC hardware. However,
the algorithm presented here shares some principles with other al-
gorithms focused on obtaining depth maps from stereo camera pairs
with BP. Some of these works have been ported to GPU hardware
bringing them closer to real-time operation. This fact opens the door
to a future GPU-based implementation of our approach that would
also make it run in real-time.
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