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ABSTRACT

In multi-camera systems for human detection and analysis,
Shape-from-Silhouette (SfS) is a common approach taken to
reconstruct the Visual Hull, i.e. the 3D-Shape, of the bodies.
The reconstructed 3D-Shape is later used in 3D-trackers and
body fitting techniques. The Visual Hull is formally defined
as the intersection of the visual cones formed by the back-
projection of several 2D binary silhouettes into the 3D space.
Silhouettes are usually extracted using a foreground classi-
fication process, which is performed independently in each
camera view. In this paper we present a novel approach in
which 2D-foreground classification is achieved in 3D accor-
dance in a Bayesian framework. In our approach, instead
of classifying images and reconstructing the volume later,
we simultaneously reconstruct and classify in the 3D space.
Furthermore, the classification of the 3D space is used to
obtain a more accurate model of the 2D-background.

1. INTRODUCTION

Background modelling has been one of the fields where com-
puter vision has had a major impact, driving successful de-
ployment of several visual surveillance/behavior modelling
systems. Advances in the field have led to multi-camera
systems designed to build volumetric models from a set of
silhouettes (foreground masks), in what is called Shape-from-
Silhouette (SfS) [1, 10, 11].

In traditional SfS, a calibrated [18] set of cameras must
be placed around the scene of interest, and pixels in all cam-
eras must be provided as either part of the foreground (φ)
or background (β). Each of the foreground camera point de-
fines a ray in the scene space that intersects 3D entities at
some unknown depth along this ray; the union of these visual
rays for all points in the silhouette defines a generalized cone
within which the entities must lie. The 3D-Shape defined by
the intersection of all the cones encloses all the foreground
entities of the scene.

SfS plays an important role in smart-room environments,
where fast 3D-Shape reconstructions are used as the building
blocks of 3D-trackers[9] and body fitting techniques[2, 3, 7].
Usually, a foreground separation process is performed at each
camera view. Then, the 3D-foreground scene is discretized
into voxels, making use of the voxel-based SfS approach. Fi-
nally, foreground voxels are grouped into meaningful blobs
and temporally tracked in 3D, preventing the difficulties of
occlusions in 2D trackers. Alternatively, foreground voxels
are used to fit models of the human body.

We propose a 2D-background modelling and foreground
classification scheme to be used in this context. While all
the state-of-the-art techniques independently learn the 2D-
background models in each view, in our approach, the 2D-
background models are learned using evidence from all the
cameras in a Bayesian framework. Note that this is quite
different from the standard approach, since 2D classification
is performed using the redundancy of all the cameras. Thus,
the system advantages is twofold; better 2D foreground re-
gions are extracted and, therefore more accurate 3D fore-

ground volumetric models of the humans in the scene can be
obtained.

The paper is structured as follows. In the next section,
the foreground and background models used in 2D are dis-
cussed, with emphasis on the segmentation as a classifica-
tion process. Section 3 is devoted to discussion of the voxel-
based SfS approach, including the approaches taken by some
practitioners. These techniques first classify the pixels into
foreground and background for all cameras and then recon-
struct the 3D volumes using the previous classification re-
sult. In section 4, two approaches for reconstructing the 3D
shapes using the 2D probabilistic models cooperatively are
discussed. In the first approach, 2D-models are considered
to be error-free, and in the second one, an error model is
introduced. Section 5 presents some experimental results.
The paper concludes in section 6 with a discussion of future
research direction.

2. 2D MODELS

In this section we describe the probabilistic fore/background
models that are estimated for the pixels in a certain view
independently of the other pixels in the rest of views. This
is the common procedure that can be used when working
with only one camera.

In order to obtain accurate 2D-segmentations using a
Bayesian framework, 2D-models should fulfill the following
requirements:
• Should not only provide fore/background classifications,

but also their probabilities.
• Foreground segmentations should not be performed as an

exception to the background model.
• Finally, the models should be adaptive to slow lighting

changes so that they can cope with fluctuations of the
light such as daylight changes in a room with windows,
or when a beamer is being used, etc.

2.1 Single-Class Adaptive Background Models

We adopt a single-class statistical model for modelling the
background colour of a pixel x (indicating its spatial coor-
dinates), given observations of its colour value I(x) across
time. For this purpose, we use a Gaussian probability den-
sity function. Gaussians have been previously proposed in
[5, 15, 17], among others, to ensure that the cameras thermal
noise does not produce classification errors. Some of these
works[5, 15], adopt multi-class models to model repetitive
background, such as in weaving flags, or moving trees. How-
ever, a single-class model is enough in our approach, since
our system is being developed to operate in a scene that
consists of a relatively static situation:

Gx(I(x)) =
1

(2π)3/2
p
|Σx|

e−
1
2 (I(x)−µx)T Σ−1

x (I(x)−µx), (1)

corresponding to the Gaussian that models the colour of the
background process of pixel x, and where pixel colour val-



ues (I(x)) are expressed as a vector of three dimensions in
the RGB colour space. Often it is assumed that the covari-
ance matrix is diagonal with R, G and B sharing the same
variances: Σx = σ2

x · Id3×3.
Similarly as in[15], model adaptation is implemented as

a low pass filter procedure. Thus, once the pixel value has
been classified into the background, the model is adapted as
follows

µx[t] =(1− ρ)µx[t− 1] + ρI(x)

σ2
x[t] =(1− ρ)σ2

x[t− 1]+

+ ρ(Ix(x)− µx[t])T (Ix(x)− µx[t]) (2)

where ρ is the adaptation learning rate: ρ ∝ Gx(I(x)).
However, our approach differs from[15] in an important

way. In[15], background classification is performed when the
pixel value falls within 2.5 standard deviations of the mean
of the Gaussian. Otherwise, it is classified as foreground.
Our approach differs in that the foreground is not classified
as an exception to the background model. Instead, we prefer
to express the problem in a Bayesian form. To do so, first
we need to model the foreground process.

2.2 Uniform Foreground Model

The foreground process can be modelled using histograms,
Gaussians or any other pdf. However, we simply use a uni-
form pdf to model the foreground process in each pixel,
which is in fact the probabilistic extension of classifying a
foreground pixel as an exception to the model, as discussed
in[13].

Since a pixel admits 2563 colours in the RGB colour
space, we model its pdf as

Ux(I(x)) =
1

2563
(3)

2.3 2D Fore/Background Classification

Once that the foreground and background likelihoods of a
pixel have been introduced, and assuming that we have some
knowledge of foreground and background prior probabilities,
P (φ) and P (β)1, respectively, we are now in position to fur-
ther discuss how the 2D-classification process can be done.

The probability that a pixel x belongs to the foreground
(φ), given an observation I(x), can be expressed in terms of
the likelihoods of the foreground and background processes
as follows

P (φ|I(x)) =
P (φ)p(I(x)|φ)

p(I(x))
, (4)

In order to compute (4), the unconditional joint prob-
ability density (p(I(x))) can be expressed in terms of the
conditional distributions as

p(I(x)) = P (φ)p(I(x)|φ) + P (β)p(I(x)|β) (5)

Then, in the case of the models described in the previous
section, (4) is

P (φ|I(x)) =
P (φ) 1

2563

P (φ) 1
2563 + P (β)Gx(I(x))

, (6)

and P (β|I(x)) = 1− P (φ|I(x)).

1Foreground and background priors depend on the application.
However, approximate values can be easily obtained for each ap-
plication by manually segmenting the foreground in some images,
and averaging the number of segmented points over the total.

Thus, a pixel is classified into the foreground class using
maximum a posteriori if P (φ|I(x)) > 1

2
is satisfied. Alterna-

tively, the following test can also be used

P (φ)P (I(x)|φ) > P (β)P (I(x)|β), (7)

which is faster, since the denominator in (4) does not have
to be computed.

Note that, in practice (see Fig. 1), this is very similar to
the approach previously described[15] consisting in determin-
ing background when a pixel value falls within 2.5 standard
deviations of the mean of the Gaussian.

Finally, the Gaussian model is adapted using (2), when
the pixel is classified into the background. In our coopera-
tive approach, the Gaussians will be updated only when the
corresponding projected 3D-Shape, built using multi-camera
information, has been classified as background.
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Figure 1: Probability density functions of a 1D-Gaussian,
with σ = 3, and a uniform ( 1

256
) distribution, assuming

equiprobable P (φ) = P (β). Note that, for this value of σ,
the point of cross of the distributions is very close to 2.5σ.

3. VOXEL-BASED SHAPE FROM
SILHOUETTE

In order to present the proposed cooperative classification
method, first we need to introduce the voxel-based SfS ap-
proach, which will be later extended to a probabilistic frame-
work.

For each camera view, a fore/background classification
is done first in all the pixels as described in section 2. In the
literature, the resulting binary image is often referred as the
silhouette of a view. Silhouettes are used in the voxel-based
SfS algorithm as follows.

Given a bounded volume, we can divide it into voxels.
Voxels are then projected into all the camera views to test
(using a Projection Test) if all the projections are contained
within a silhouette. Note that in this approach 3D classifi-
cation is just an outcome of the 2D segmentation process.

For the sake of simplicity we consider a simple Projec-
tion Test which is passed if the pixel corresponding to the
projection of the center of the voxel belongs to a silhouette.
Other more robust tests can be found in [7].

The voxel-based SfS approach for any Projection Test
is detailed in Algorithm 1, where MINC is used to refer to
the minimum number of visual cones intersection required
to reconstruct the voxel.



Algorithm 1 Voxel-based SfS algorithm

Require: Silhouettes: S(c), a Projection Test Function:
PTc(voxel, Silhouette)

1: for all voxel do
2: in← 0
3: voxel← Background
4: for all cameras (c = 1, · · · , C) do
5: if PTc(voxel, S(c)) is passed then
6: in← in + 1
7: end if
8: end for
9: if in ≥ MINC then

10: voxel← Foreground
11: end if
12: end for

In conventional voxel-based SfS, MINC = C (see Algo-
rithm 1). However, some practitioners [14, 9] prefer setting
MINC = C − P , where P is the number of acceptable 2D-
misses among the set C of cameras. Although single misses
do not block the reconstruction in this approach, the result-
ing 3D-Shape is larger than the real Visual Hull for requiring
fewer visual cones intersections.

4. COOPERATIVE BACKGROUND
MODELLING

In this section, we propose a Bayesian method for classify-
ing the voxels making use of the 2D-fore/background mod-
els of all the views. As will be shown further on, in this
new approach, pixel models cooperate to classify the vox-
elized scene. In compensation, they benefit from the 3D-
classification since they are only updated when the fore-
ground voxels do not project over them.

We adapt the notation in the rest of the text so that x, I
and Gx(I(x)) can be referred to each one of the C views:
xi, Ii and Gi,xi(Ii(xi)). In the following, we first consider
error-free 2D-models, and later in the section, we adapt an
outlier model to the 2D-models.

4.1 Probabilistic voxel classification

Voxel-based Shape-from-Silhouette can also be thought as a
classification problem. Consider a pattern recognition prob-
lem where, in a certain view Ii, a voxel in location v is
assigned to one of the two classes φ (2D-foreground), or β
(2D-background), given a measurement Ii(xi), correspond-
ing to the pixel value of the projected voxel: v → xi, in
camera i [6].

Now, let us represent with super classes (Γ0, · · · , ΓK) all
possible combinations of 2D-fore/background detections in
all views (i = 1, · · · , C).

Γ0 = { φ, φ, φ, · · · , φ }
Γ1 = { β, φ, φ, · · · , φ }
Γ2 = { φ, β, φ, · · · , φ }
...

Γj = { Γj [1], Γj [2], Γj [3], · · · , Γj [C] }
...

ΓC+1 = { β, β, φ, · · · , φ }
...

ΓK = { β, β, β, · · · , β }

And prior probabilities are:

P (Γ0) = P (φ)P (φ) · · ·P (φ) = P (φ)C = PS

P (Γ1) = P (β)P (φ) · · ·P (φ) = P (β)P (φ)C−1

...

P (ΓK) = P (β)P (β) · · ·P (β) = P (β)C ,

where a detected voxel, i.e. a voxel of the 3D-Shape, belongs
to super class Γ0, with PS prior probability2. Contrarily, an
undetected voxel, i.e. a voxel of the 3D-Background, belongs
to any of the other super classes (Γk 6=0), since voxels are
not detected when at least one projected voxel (xi) is not
classified as a foreground pixel. The total number of 3D-
Background super classes is K =

PC
i=1

`
C
i

´
.

According to Bayesian theory, given observations
(Ii(xi), i = 1, · · · , C), a super class Γj is assigned, provided
the a posteriori probability of that interpretation is maxi-
mum:

P (Γj |I1(x1), · · · , IC(xC)) = max(P (Γk|I1(x1), · · · , IC(xC)))
(8)

Assuming here and in the rest of the text that the super
classes are conditionally independent, and using the Bayes
theorem:

P (Γk|I1(x1), · · · , IC(xC)) =
P (Γk)

QC
i=1 p(Ii(xi)|Γk)

p(I1(x1)) · · · p(IC(xC))
, (9)

where p(Ii(xi)|Γk) is the likelihood of the observation,
given a certain super class. For instance, given Γ2 =
{φ, β, φ, · · · , φ}, likelihoods p(I1(x1)) and p(I2(x2)) are

p(I1(x1)|Γ2) = p(I1(x1)|Γ2[1]) = p(I1(x1)|φ) =
1

2563

p(I2(x2)|Γ2) = p(I2(x2)|Γ2[2]) = p(I2(x2)|β) = G2,x2(I2(x2))

Substituting (9) into (8) we finally obtain the decision
rule

Choose Γj if:

P (Γj)

CY
i=1

p(Ii(xi)|Γj [i]) = max P (Γk)

CY
i=1

p(Ii(xi)|Γk[i])

(10)

Or in terms of a posteriori probabilities

Choose Γj if:

P (Γj)

CY
i=1

P (Γj [i]|Ii(xi))

P (Γj [i])
= max P (Γk)

CY
i=1

P (Γk[i]|Ii(xi))

P (Γk[i])

(11)

which is equivalent to

Choose Γj if:

P (Γj)
1−C

CY
i=1

P (Γj |Ii(xi)) = max P (Γk)1−C
CY

i=1

P (Γk|Ii(xi)),

(12)

2The prior probability of detecting a foreground voxel can be
simply obtained by computing the detected voxel / total voxel
occupancy ratio using conventional SfS, for instance. P (φ) and
P (β) are obtained from PS : P (φ) = C

√
PS and P (β) = 1− P (φ).



where P (Γk|Ii(xi)) is the probability of a super class, given
a certain observation. For instance, given I2(x2), the prob-
ability of super class P (ΓC+1) is

P (ΓC+1|I2(x2)) = P (β)P (β|I2(x2))P (φ)C−2

= P (β)
P (β)G2,x2(I2(x2))

P (I2(x2))
P (φ)C−2,

where P (I2(x2)) can be computed using (5).
Both (10) and (12) decide the most probable super class.

However (10) can be used to obtain faster classification, even
though the probabilities are not explicitly computed.

4.2 Discussion

Note that the decision rule is very strict in the sense that a
single misclassification in a view inhibits a correct interpreta-
tion of the process occurred. Miss-classifications are specially
sensible in the case of super class Γ0, since a single misdetec-
tion of a φ class will let a erroneous 3D-Background detec-
tion. On the contrary, misclassifications in a 3D-Background
super class often will lead to another 3D-Background super
class, which is not a severe problem.

In order to prevent such type of errors, we can force the
classifiers not to deviate from the prior probabilities. This
can be done with two different interpretations of the prob-
lem: (1) considering an outlier model in the 2D-models [12];
and (2) assuming that P (Γk|Ii(xi)) = P (Γk)(1 + δki) [8].
Both interpretations are discussed in the following.

4.3 Probabilistic voxel classification considering
outliers in the 2D-model

If we consider that the 2D-model has an associated probabil-
ity of outlier e, then we can use the prior probability when
the model fails

P ′(Γk|Ii(xi)) = eP (Γk) + (1− e)P (Γk|Ii(xi)) (13)

and then,

P ′(Γk|I1(x1), · · · , IC(xC)) =

CY
i=1

(eP (Γk) + (1− e)P (Γk|Ii(xi))) (14)

A Taylor expansion in f around 0, after replacing vari-
ables f = (1− e), gives

P ′(Γk|I1(x1), · · · , IC(xC)) = (eP (Γk))C+

+ (eP (Γk))C−1(1− e)

CX
i=1

P (Γk|Ii(xi)) + O((1− e)2)

(15)

If e is close to 1, then only the first two terms matter. This
is a rather strong assumption but it may be satisfied when
observed data is highly ambiguous.

Under this assumption, super class Γj is chosen using the
following decision rule

Choose Γj if:

(eP (Γj))
C + (eP (Γj))

C−1(1− e)

CX
i=1

P (Γj |Ii(xi)) =

max

 
(eP (Γk))C + (eP (Γk))C−1(1− e)

CX
i=1

P (Γk|Ii(xi))

!
(16)

4.4 Probabilistic voxel classification considering
non-deviated posteriors

A similar result to (16) can be obtained expressing a poste-
riori probabilities as

P (Γk|Ii(xi)) = P (Γk)(1 + δki), (17)

where δki � 1. This expression assumes that the a posteriori
probabilities computed by the respective classifiers will not
deviate dramatically from the prior probabilities [8].

Substituting (17) into (12), and neglecting terms of sec-
ond and higher order we obtain

Choose Γj if:

(1− C)P (Γj) +

CX
i=1

P (Γj |Ii(xi)) =

max

 
(1− C)P (Γk) +

CX
i=1

P (Γk|Ii(xi))

!
(18)

Note that both interpretations described in (16) and (18)

convert the product (
QC

i=1 P (Γk|Ii(xi))) in (12) into a sum

(
PC

i=1 P (Γk|Ii(xi))). Interestingly, this is the probabilistic
justification of the previously described approach taken by
practitioners in voxel-based SfS, consisting in letting a voxel
reconstruction with only a partial sum of C − P foreground
projections, instead of requiring total intersection.

4.5 Implementation issues

When using a large number of cameras, the class of max-
imum probability has to be found in a large search-space
(K), and computational costs may be too high for cer-
tain applications. If this is the case, one can compute
P (Γ0|Ii(xi), i = 1, · · · , C) and set a threshold on the prob-
ability of the 3D-Shape. The probability of the 3D-Shape
(P(Γ0)) can be obtained using (9) when working with re-
liable 2D-models, or with (14) when considering a certain
probability of outliers (e) in the 2D-models.

Threshold selection is performed only once per each dif-
ferent type of working environment. The threshold can be
simply obtained by inspection of original image confronted
to the projected probabilities (see Fig. 2(a) and (c)). Note
that when the probabilities of the 3D-Shape are projected,
special care has to be taken so that pixels are assigned the
highest probability value among all voxels whose projection
belongs to the pixel.

However, it has to be remarked that the most reliable
classification, with a Bayesian justification, is done using
(10), when considering error-free 2D-models and (16) or (18),
when considering an error model. The drawback is that the
probabilities of all the 3D Background super classes, which
we are not interested in, will have to computed.

Once the voxels have been classified with any of the pre-
viously discussed procedures, the resulting foreground voxels
are projected to all the views, and Gaussians are adapted
using (2) in all those pixels which do not belong to the pro-
jected 3D-Shape.

5. RESULTS

The system has been evaluated using 5 synchronized video
streams, captured and stored in JPEG format, in the smart-
room of our lab at the UPC. Apart from the compression
artefacts, the imaging scenes also contain a range of diffi-
cult defects, including illumination changes due to a beamer
and shadows. Our system has dealt with all these prob-
lems successfully, improving the results of conventional 2D-
segmentators and standard SfS reconstruction methods.



Fig. 2 shows an example in a certain view and instant.
The original image (a) can be compared to the resulting
mask after performing a conventional 2D-foreground seg-
mentation in (b) and a cooperative 2D-foreground segmen-
tation in (d). In the example, the outlier model in (14),
without further simplifications is used. In this example, we
have used e = 0.5. The classification is performed setting a
threshold to the probability of 3D-foreground by inspection
of (c), as discussed in the previous section.

(a) (b)

(c) (d)

Figure 2: The original image is show in (a). Picture (b),
shows the foreground segmentation using conventional clas-
sification as explained in section 2. In (c), the projected
probabilities of the 3D-Shape are shown in gray scale. Fi-
nally, image (d) shows the foreground segmentation using
the cooperative framework.

Inspection of silhouettes (b) and (d) shows that the 2D-
models learned in the cooperative approach are clearly better
than those which are learned using a single-view approach.
The improvement of the models and silhouettes will be very
important when combining them with other processing mod-
ules which make use of the segmented foreground as their in-
put, such as face detectors or 2D gesture analysis modules.

6. CONCLUSION AND FUTURE WORK

In this paper, we have presented a vision-based system for ac-
curate 2D and 3D foreground segmentation. The presented
method is able to segment the foreground in a view using the
evidence present in the rest of cameras. Some of the future
works include adapting the presented Bayesian framework
to other SfS approaches[4, 16] which are able to detect some
2D-classification errors based on the geometric constraints of
Visual Hull (testing correspondences of the frontier points).
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